当n=1时,Tn=bn=1/2
数列bn=1/(n^2)+1 前n项和为Tn,求证:对于任意正整数n 都有 Tn
2个回答
相关问题
-
令bn=(2^(n-1)+1)/((3n-2)an)数列{bn^2}的前n项和为tn,证明对于任意的n∈N+,都有tn
-
若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn,求Tn
-
数列bn的前n项和为Tn,6Tn=(3n+1)bn+2,求bn
-
数列(bn)的前n项和是Tn,且Tn+1/2bn=1,求证数列(bn)是等比数列
-
数列an=4n-3,bn=1/(an·a(n+1),Tn为数列{bn}前n-1项和,求Tn.
-
an=6n-5(n是正整数)bn=3/(an*an+1)Tn是数列bn的前n项和,求使Tn
-
数列求和数列bn=[(-1)^n]*n^2,求前n项和Tn
-
若bn=log2|an|(n≥1,n属于N)设Tn为数列{1/(n+1)(bn-1)}的前n项和,求Tn
-
an=2n-1, 设bn=1/[an*a(n+1)],前n项和为Tn,求证Tn<1/2
-
已知数列AN的前N项和为SN=N^2+1,数列BN满足BN=2/(AN+1)前N项和为TN,设CN=T2N+1-TN.