(1)
f(x)=e^x+aln(x+1)+a+1(x>-1)
a=-1
f(x)=e^x-ln(x+1)
f(x)'=e^x-1/(x+1)
x=0时f(x)'=0
x0
所以
函数在(0,+∞)上的单调性是单调递增
(2)
f(x)'=e^x+a/(x+1)
g(x)=e^x+1
f(x)'-g(x)=e^x+a/(x+1)-e^x-1=a/(x+1)-1>=0
a/(x+1)>=1
a>=x+1>=2
所以a>=2
(1)
f(x)=e^x+aln(x+1)+a+1(x>-1)
a=-1
f(x)=e^x-ln(x+1)
f(x)'=e^x-1/(x+1)
x=0时f(x)'=0
x0
所以
函数在(0,+∞)上的单调性是单调递增
(2)
f(x)'=e^x+a/(x+1)
g(x)=e^x+1
f(x)'-g(x)=e^x+a/(x+1)-e^x-1=a/(x+1)-1>=0
a/(x+1)>=1
a>=x+1>=2
所以a>=2