设直线AB:x/a-y/b=1
c/a=√6/3
c²=2/3a²
a²=b²+c²
b²=1/3a²
根据题意
1/√(1/a²+1/b²)=√3/2
1/(1/a²+1/b²)=3/4
1/(1/a²+3/a²)=3/4
1/4a²=3/4
a²=3,a=√3
b²=1,b=1
c²=2,c=√2
椭圆方程:x²/3+y²=1
(2)设点C(x1,y1),D(x2,y2)
将直线方程代入椭圆x²+3y²=3
x²+3(k²x²+4kx+4)=3
(1+3k²)x²+12kx+9=0
x1+x2=-12k/(1+3k²)
x1*x2=9/(1+3k²)
y1*y2=(kx1+2)(kx2+2)=k²x1x2+2k(x1+x2)+4
Kce×Kde=y1/(x1+1)*y2/(x2+1)
=y1y2/(x1x2+x1+x2+1)
=[k²x1x2+2k(x1+x2)+4]/(x1x2+x1+x2+1)
=[9k²/(1+3k²)-24k²(1+3k²)+4]/(9/(1+3k²)-12k/(1+3k²)+1]
=(4-3k²)/(3k²-12k+10)
若存在k,那么
(4-3k²)/(3k²-12k+10)=-1
4-3k²=-3k²+12k-10
12k=14
k=7/6
存在k此时k=7/6