∫L -2√y³dx+3(x+2)√ydy,其中L为从O(0,0)经y³=4x²到(1/2,1)那一段

1个回答

  • Y型:

    y³ = 4x² → x = √(y³/4) = (1/2)y^(3/2)、其中x ≥ 0

    dx = (1/2)(3/2)y^(1/2) dy = (3/4)√y dy、y:0→1

    ∫L - 2√y³dx + 3(x + 2)√ydy

    = ∫(0→1) {- 2√y³(3/4)√y + 3[(1/2)y^(3/2) + 2]√y} dy

    = 6∫(0→1) √y dy

    = 6(2/3)y^(3/2) |(0→1)

    = 4

    X型:

    y³ = 4x² → y = ³√(4x²) = 2^(2/3) * x^(2/3)

    dy = 2^(2/3) * (2/3)x^(- 1/3) dx = 1/3*2^(5/3)*x^(- 1/3) dx,x:0→1/2

    ∫L - 2√y³dx + 3(x + 2)√ydy

    = ∫(0→1/2) [- 2*2x + 3(x + 2)*2^(1/3)*x^(1/3)*1/3*2^(5/3)*x^(- 1/3)] dx

    = 8∫(0→1/2) dx

    = 8x |(0→1/2)

    = 8(1/2)

    = 4

    格林公式(参考,好学的话自己理解):

    补上L₁:y = 0、dy = 0、x:0→1/2、逆时针

    补上L₂:x = 1/2、dx = 0、y:0→1、逆时针

    其中L⁻ + L₁ + L₂ = C、围成闭区域D、逆时针.

    P = - 2√y³、Q = 3(x + 2)√y

    ∂Q/∂x - ∂P/∂y = 3√y - (- 3√y) = 6√y

    IC = ∮C - 2√y³dx + 3(x + 2)√ydy = 6∫∫D √y dxdy

    = 6∫(0→1/2) ∫(0→³√(4x²)) √y dydx

    = 6∫(0→1/2) (2/3)y^(3/2) |(0→³√(4x²)) dx

    = 4∫(0→1/2) 2x dx

    = 4 * x² |(0→1/2)

    = 1

    IL⁻ + IL₁ + IL₂ = IC

    IL⁻ + 0 + ∫L₂ 3(1/2 + 2)√y dy = 1

    IL⁻ + (15/2)∫(0→1) √y dy = 1

    IL⁻ + (15/2)(2/3)y^(3/2) |(0→1) = 1

    IL⁻ + 5 = 1

    IL⁻ = - 4

    - IL = - 4

    IL = 4

    这里L⁻跟L的方向相反,L顺时针、L⁻逆时针,有IL = - IL⁻

    IL是原式积分的简写.