作AH⊥BC交BC于H点.由题意可知∠B=∠DCB=60度,∠ACB=∠DCB/2=30度
∴∠BAC=180-60-30=90度,又BE=CE
∴AE=BC/2=BE=CE
∴S∆ACE=AH*CE/2=AH*BE/2
∵∠B=60度且AE=BE
∴∆ABE为等边三角形,即AE=AB=DC
∴EC=DC,即∆ECD为等边三角形
∴∠DEC=60度,所以AB//DE
即四边形ABED为平行四边形
∴Sabed=AH*BE
所以S∆ACE/Sabed=1/2
作AH⊥BC交BC于H点.由题意可知∠B=∠DCB=60度,∠ACB=∠DCB/2=30度
∴∠BAC=180-60-30=90度,又BE=CE
∴AE=BC/2=BE=CE
∴S∆ACE=AH*CE/2=AH*BE/2
∵∠B=60度且AE=BE
∴∆ABE为等边三角形,即AE=AB=DC
∴EC=DC,即∆ECD为等边三角形
∴∠DEC=60度,所以AB//DE
即四边形ABED为平行四边形
∴Sabed=AH*BE
所以S∆ACE/Sabed=1/2