双曲线的方程:X^2/2-Y^2/2=1,F(2,0).
当弦AB的斜率不存在时,M(2,0);
当弦AB的斜率存在时,
设为K,设A(x1,y1),B(x2,y2),M(X,Y),
则x1^2/2-y1^2/2=1,x2^2/2-y2^2/2=1,
两式相减有:(y1-y2)/(x1-x2)=(x1 x2)/(y1 y2),
故K=X/Y,又K=Y/(X-2),
故X/Y=Y/(X-2),
所以(X-1)^2-Y^2=1,
又点(2,0)满足此方程,
故M的轨迹方程为:(X-1)^2-Y^2=1.