设A=2007
原式=A^2+A^2(A+1)^2+(A+1)^2
=A^4+2A^3+3A^2+2A+1
=A^2[A^2+2A+3+2/A+1/A^2]
=A^2[(A+1/A)^2+2(A+1/A)+1]
=A^2(A+1/A+1)^2
=(A^2+A+1)^2
代入数据得
原式=(2007^2+2007+1)^2 =4030057^2=16241359423249
设A=2007
原式=A^2+A^2(A+1)^2+(A+1)^2
=A^4+2A^3+3A^2+2A+1
=A^2[A^2+2A+3+2/A+1/A^2]
=A^2[(A+1/A)^2+2(A+1/A)+1]
=A^2(A+1/A+1)^2
=(A^2+A+1)^2
代入数据得
原式=(2007^2+2007+1)^2 =4030057^2=16241359423249