这个命题是正确的.
实际上任意收敛数列都是有界的(上界下界都存在).
设lim{n → ∞} a[n] = b,由极限的定义,
对ε = 1 > 0,存在N,使得n > N时|a[n]-b| < ε = 1.
于是对n > N,有b-1 < a[n] < b+1.
然而n ≤ N只有有限项,可取x为其中最大数,取y为其中最小数.
则max{x,b+1}是数列的一个上界,
而min{y,b-1}是数列的一个下界.
即收敛数列都是有界数列.
这个命题是正确的.
实际上任意收敛数列都是有界的(上界下界都存在).
设lim{n → ∞} a[n] = b,由极限的定义,
对ε = 1 > 0,存在N,使得n > N时|a[n]-b| < ε = 1.
于是对n > N,有b-1 < a[n] < b+1.
然而n ≤ N只有有限项,可取x为其中最大数,取y为其中最小数.
则max{x,b+1}是数列的一个上界,
而min{y,b-1}是数列的一个下界.
即收敛数列都是有界数列.