用洛必达法则就行了上下求导,就能得到这个结论
设函数f在任一有限区间上可积,且limf(x)=a (x趋于+∞)证明:lim1/x∫f(t)dt=a(积分是0到x)
1个回答
相关问题
-
设对任意a>0,函数f(x)在[0,a]上可积,且limf(x)=A(x趋于正无穷).证明:
-
证明题求定积分设函数F(X)在区间[a,b]上连续,单调增加,F(X)=1/(x-a)倍的{定积分f(t)dt,积分区间
-
设函数f(x)在[A,B]上连续,证明lim(h→0) 1/h*∫(x,a)[f(t+h)-f(t)]dt=f(x)-f
-
若f(x)在(a,+∞)内可导,且lim【f(x)+f(x)的导数】=0下面是x趋于+∞ 证明:limf(x)=0下面是
-
设f(x)在[a,b]上连续,在(a,b)内可导且f'(x)<0,证明函数F(x)=1╱(x-a)∫f(t)dt (上限
-
设f(x)在[a,b]上连续且f(x)>0,又F(x)=∫(a,x)f(t)dt+f(x,b)(1/f(t))dt证明:
-
设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
-
设函数f(x)在闭区间[a,b]上连续,且f(x)>0,则方程∫xaf(t)dt+∫xb1f(t)dt=0在开区间(a,
-
函数f(x)>0在[a,b]上连续,令F(x)=∫(0到x)f(t)dt+∫(0到x)1/f(t)dt,证明方程F(x)
-
设f(x)在R上非负可积(即在任意闭区间上定积分存在),且f(x)=∫x0f(t)dt,考虑对f(x)在[0,+∞)上的