(1)由y=ax²+bx+c和y-bx,可消去y,得ax²+2bx+c=0.
∵a>b>c,a+b+c=0,
∴a>0,c<0,
∴方程ax²+2bx+c=0的判别式△=(2b)² - 4ac = 4(-a-c)² - 4ac = 4(a+c/2)² + 3c²>0
∴方程ax²+2bx+c=0有两个不相等的实数根,
∴函数f(x)与g(x)的图像有两个不同的交点.
(2)设方程ax²+2bx+c=0的两个不相等的实数根为X1和X2,则(韦达定理)
X1+X2=-2b/a
X1·X2=c/a,
∴|A1B1|²=(X2-X1)²-4X1X2=4(c/a+½)²+3.
由a>b>c,a+b+c=0,
得a>0,c<0,a>-a-c>c,
∴c/a∈(-2,-½),
∴|A1B1|∈(√3,2√3).