y=1+sin2x+2cos^2x-1+1
=sin2x+cos2x+2
=√2sin(2x+π/4)+2
2x+π/4=π/2+2kπ(k∈Z)
2x=π/4+2kπ
x=π/8+kπ
2x+π/4=3π/2+2kπ(k∈Z)
2x=5π/4+2kπ
x=5π/8+kπ
递减区间[π/8+kπ,5π/8+kπ](k∈Z)
y(max)=√2+2
y(min)=-√2+2
y=1+sin2x+2cos^2x-1+1
=sin2x+cos2x+2
=√2sin(2x+π/4)+2
2x+π/4=π/2+2kπ(k∈Z)
2x=π/4+2kπ
x=π/8+kπ
2x+π/4=3π/2+2kπ(k∈Z)
2x=5π/4+2kπ
x=5π/8+kπ
递减区间[π/8+kπ,5π/8+kπ](k∈Z)
y(max)=√2+2
y(min)=-√2+2