设A(x1,y1),B(x2,y2), M(x0,y0)
x0=(x1+x2)/2,y0=(y1+y2)/2,
直线斜率k=tan135°=-1,
(y1-y2)/(x1-x2)=-1,
代入椭圆方程,x1^2/a^2+y1^2/b^2=1,(1),
x2^2/a^2+y2^2/b^2=1,(2),
(1)-(2)式,
b^2/a^2+[(y1-y2)/(x1-x2)]*[y1+y2)/2]/[(x1+x2)/2]=0,
b^2/a^2-1*y0/x0=0,
y0/x0=b^2/a^2,(3)
在三角形MOF中,外角〈AMO=θ,tanθ=3,
设
α=θ-45°,
tanα=(tanθ-tan45°)/(1+tanθ*tan45°)=(3-1)/(1+1*3)=1/2,
tanα=y0/x0=1/2,
由(3)式,b^2/a^2/=1/2,
b/a=√2/2,
b=a√2/2
c=√(a^2-b^2)=a√2/2,
∴离心率e=c/a=√2/2.