1、
f'(x)=-((x*ln(x)+kx-1)*e^(-x))/x
当x=1时,f'(1)=-(k-1)/e=0
所以k=1
2、
f(x)的定义域为x>0
因为 x=1时取得极值,所以将区间分为(0,1)和[1,∞)
当0=1,e^(x-1)>=1 所以
ln(x^x*e^(x-1))>0
因 -f'(x)>0 所以,递减
递增区间(0,1)
递减区间[1,∞)
3、g(x)=-(x+1)(xln(x)+x-1)*e^-x
g'(x)=((x²-x+1)ln(x)+x²-3x+2)*e^-x
令g'(x)=0
说说步骤吧:对G(x)求一阶导数,得出为0的点,取得驻点,用二阶导数判断是极大还是极小.
再代入到G(x),得到最大值.
详细步骤需要的话补附!