(1)证明:令{an}的公差为d1,{bn}的公差为d2.
则S2n-1=[a1+a1+(2n-1-1)d1](2n-1)/2=2[a1+(n-1)d1](2n-1)/2
T2n-1=[b1+b1+(2n-1-1)d2](2n-1)/2=2[b1+(n-1)d2](2n-1)/2
(S2n-1)/(T2n-1)=[a1+(n-1)d1]/[b1+(n-1)d2]=an/bn
(2)由上知a3/b3=S5/T5=(5n+1)/(3n-1)=13/7.
(1)证明:令{an}的公差为d1,{bn}的公差为d2.
则S2n-1=[a1+a1+(2n-1-1)d1](2n-1)/2=2[a1+(n-1)d1](2n-1)/2
T2n-1=[b1+b1+(2n-1-1)d2](2n-1)/2=2[b1+(n-1)d2](2n-1)/2
(S2n-1)/(T2n-1)=[a1+(n-1)d1]/[b1+(n-1)d2]=an/bn
(2)由上知a3/b3=S5/T5=(5n+1)/(3n-1)=13/7.