(1)f(x/y)=f(x)-f(y)且y=f(x)的定义域在(0,正无穷)
令 x=y =1 f(1) = f(1) - f(1) = 0
(2)f(x/y)=f(x)-f(y) 得出 f(x) = f(x/y) + f(y)
令x=xy带入f(xy)=f(xy/y)+f(y) = f(x)+f(y);
(3)y=f(x)是定义域在(0,正无穷)上有单调性 f(0) = 0;f(2)=1 为单调递增
f(x)-f(1/(x-3)) < = 2 = 1+1= f(2)+f(2) 得出x>0 1/x-3 >0 求得 x> 3
f(x/(1/(x-3)) )