∫x^2/√(1-x^2)dx=-∫ -2x^2/2√(1-x^2) dx
=-∫ x d√(1-x^2)
=-x√(1-x^2)+∫√(1-x^2)dx
其中,解∫√(1-x^2)dx
令x=sint
dx=costdt
则∫√(1-x^2)dx= ∫(cost)^2 dt
=(1/2)∫(1+cos2t) dt
=(1/2)cost+(1/4)∫cos2t d2t
=(1/2)cost+(1/4)sin2t
=(1/2)√(1-x^2)+(1/2)x√(1-x^2)+C
一加最后是:
(1/2)√(1-x^2)-(1/2)x√(1-x^2)+C