∫x^2/√(1-x^2)dx 的不定积分

1个回答

  • ∫x^2/√(1-x^2)dx=-∫ -2x^2/2√(1-x^2) dx

    =-∫ x d√(1-x^2)

    =-x√(1-x^2)+∫√(1-x^2)dx

    其中,解∫√(1-x^2)dx

    令x=sint

    dx=costdt

    则∫√(1-x^2)dx= ∫(cost)^2 dt

    =(1/2)∫(1+cos2t) dt

    =(1/2)cost+(1/4)∫cos2t d2t

    =(1/2)cost+(1/4)sin2t

    =(1/2)√(1-x^2)+(1/2)x√(1-x^2)+C

    一加最后是:

    (1/2)√(1-x^2)-(1/2)x√(1-x^2)+C