解题思路:(1)根据正方形的性质和DP⊥CQ于点E可以得到证明△BCQ≌△CDP的全等条件;
(2)根据(1)得到BQ=PC,然后连接OB,根据正方形的性质可以得到证明△BOQ≌△COP的全等条件,然后利用全等三角形的性质就可以解决题目的问题.
证明:∵四边形ABCD是正方形,
∴∠B=∠PCD=90°,BC=CD,(2分)
∴∠2+∠3=90°,
又∵DP⊥CQ,
∴∠2+∠1=90°,
∴∠1=∠3,(4分)
在△BCQ和△CDP中,
∠B=∠PCD
BC=CD
∠1=∠3.
∴△BCQ≌△CDP.(5分)
(2)连接OB.
(6分)
由(1):△BCQ≌△CDP可知:BQ=PC,(7分)
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
而点O是AC中点,
∴BO=
1
2AC=CO,∠4=
1
2∠ABC=45°=∠PCO,(9分)
在△BOQ和△CDP中,
BQ=CP
∠4=∠PCO
BO=CO.
∴△BOQ≌△COP,
∴OQ=OP.(10分)
点评:
本题考点: 正方形的性质;全等三角形的判定与性质.
考点点评: 解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,利用它们构造证明全等三角形的条件,然后通过全等三角形的性质解决问题.