连接DE
1.先证△ABD是Rt△,然后∵CE是AB的中线
∴E为AB的中点
∴ED=1/2AB=BE=AE
∵DC=BE
∴DC=DE
∵在△DEC中 DE=DC
又∵DG⊥EC
∴EG=GC
∴G是CE的中点
2.先证明△BED,△EDC是等腰△.然后∴∠B=∠BDE
∠DEC=∠ECD
∵∠BDE=∠DCE+∠DEC
∴∠BDE=2∠DCE=∠B希望能帮到你
连接DE
1.先证△ABD是Rt△,然后∵CE是AB的中线
∴E为AB的中点
∴ED=1/2AB=BE=AE
∵DC=BE
∴DC=DE
∵在△DEC中 DE=DC
又∵DG⊥EC
∴EG=GC
∴G是CE的中点
2.先证明△BED,△EDC是等腰△.然后∴∠B=∠BDE
∠DEC=∠ECD
∵∠BDE=∠DCE+∠DEC
∴∠BDE=2∠DCE=∠B希望能帮到你