26.已知三角形ABC的三边长为a、b、c,面积为S,三角形A1B1C1的三边长分别未a1、b1、c1,面积为S1,且a

1个回答

  • 26:D,三角形面积公式为 底*高/2 如果两个三角形 如果其中一个三角形的一个角接近了180度 而且它的两条边很长 那么同样长度底边的一个直角三角形 面积上会轻易打败我先前说的那个三角形

    27:A,所求的式子 化简为:(x+y)/4.所以,只要求出(x+y)的最小值即可

    因为y=1/x

    所以图像为一个反比例函数 ,而所求的y=-x+z,就是说是一个倾斜角度为135度的直线 而所求的z值,就是该直线在y轴上的交点长度,画图发现,它和反比例函数的交点为(1,1),此时z值为2,所以结论为1/2

    28:A,设1+a=x,a+z=b.则 (1/1+a)-(1/1+b)=1/b-a 可化解为:1/x-1/(x+z)=1/z

    然后解出来:x=(-1加减√5)*z/2

    也就是说x/z=(-1加减√5)/2

    即为(1+a)/(b-a)=(-1加减√5)/2----------------------式子1

    将 (1/1+a)-(1/1+b)=1/b-a左右都乘以(b-a)

    得出(b-a)/(1+b)=)=(-3加减√5)/2--------------------------式子2

    将式子1和式子2相乘 得出:四组数 从选项中看 是选A

    29:A.首先,从顶点上看 抛物线的开口肯定朝上

    ,并且顶点纵坐标=-1,可推导出:4ac-b*b+4a=0--------------式子1

    从画图上看,RT三角形ABC的面积,AB边一定是斜边

    那么面积为AB*高/2

    即为(|x2-x1|)*|c|/2

    即为[根号下(b*b-4ac)]*|c|/2a---------式子2

    根据式子1:b*b-4ac=4a

    所以 式子2 可化简为:

    |c|/根号下a-----------式子3

    再看:三角形ABC符合勾股定理:

    AC*AC+BC*BC=AB*AB

    即为x1*x1+c*c+x2*x2+c*c=(x2-x1)*(x2-x1)

    因此得出c*c=-x1*x2=-c/a

    c*a=-1----------式子4

    所以 式子3可化解为:-c/根号下a=1/(a√a)-----------式子5

    三角形面积最大的时候,要求a的值最小.-----------条件6

    结合式子1和式子4,可以得出

    b=正负√(4a-4)得出为a>=1

    结合条件6,a=1的时候,三角形面积才为最大,所以面积为:1

    30:B,你的写法很不严谨,不太明白你的表述:2^3指的是不是2*2*2?

    若如此 分子可化简一下(2-1)(2*2+2+1)(3-1)(3*3+3+1)(4-1)(4*4+4+1)……(100-1)(100*100+100+1)

    分母可化简为:(2+1)(2*2-2+1)(3+1)(3*3-3+1)(4+1)(4*4-4+1)……(100+1)(100*100-100+1)

    其中分母的(2+1)可与分子的(4-1)约去,后续的(3+1)也会与分子的(5-1)约去

    最后式子变成了

    而另一方面:分子的(2*2+2+1)可以与分母的(3*3-3+1)相化解 后续的也能化解,依据的原理为:(x-1)*(x-1)+(x-1)+1=x*x-x+1

    所以,这样约下来,这个式子变成了:

    (2-1)*(3-1)*(100*100+100+1)

    ____________________

    (2*2-2+1)*(99+1)*(100+1)

    这个数字为:20202/30300

    明显可以看出来 约为20202/30303

    就选B了