P是三角形ABC所在平面上的一个点,PA+PB+2PC=0.三角形ABC面积为1.求三角形ABP的面积

2个回答

  • 如图所示

    过AB中点R作RC并延长至Q点,使得QR=(1/2)CR,再连接AR、BR

    取CR中点为P.

    由于四边形APBQ的对角线互相平分,因此四边形APBQ为平行四边形

    又PQ=2PC,所以在以AB为公共底边两三角形△ACB、△APB中,P为RC中点,故有此两三角形的公共底边AB上的高之比为2:1

    也即是S△ABC=2S△APC

    现在从向量上来看,由于AQ与PB平行且相等,BQ与PA平行且相等,即向理PA+向量PB=向理PQ

    又向量PQ=-2向量PC

    即满足上式向量:PA+PB+2PC=0

    故所求S△APC=1/2