初中数学的 正弦余弦正切那些知识有点忘了,请帮助.

3个回答

  • ~!图看我这提示画/这些知识我好象刚复习到呢!高三啦!

    函数名 正弦 余弦 正切 余切 正割 余割

    在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

    正弦函数 sinθ=y/r

    余弦函数 cosθ=x/r

    正切函数 tanθ=y/x

    余切函数 cotθ=x/y

    正割函数 secθ=r/x

    余割函数 cscθ=r/y

    (斜边为r,对边为y,邻边为x.)

    以及两个不常用,已趋于被淘汰的函数:

    正矢函数 versinθ =1-cosθ

    余矢函数 coversθ =1-sinθ

    正弦(sin):角α的对边比上斜边

    余弦(cos):角α的邻边比上斜边

    正切(tan):角α的对边比上邻边

    余切(cot):角α的邻边比上对边

    正割(sec):角α的斜边比上邻边

    余割(csc):角α的斜边比上对边

    [编辑本段]同角三角函数间的基本关系式:

    ·平方关系:

    sin²(α)+cos²(α)=1 cos²(a)=(1+cos2a)/2

    tan²(α)+1=sec²(α) sin²(a)=(1-cos2a)/2

    cot²(α)+1=csc²(α)

    ·积的关系:

    sinα=tanα*cosα

    cosα=cotα*sinα

    tanα=sinα*secα

    cotα=cosα*cscα

    secα=tanα*cscα

    cscα=secα*cotα

    ·倒数关系:

    tanα·cotα=1

    sinα·cscα=1

    cosα·secα=1

    直角三角形ABC中,

    角A的正弦值就等于角A的对边比斜边,

    余弦等于角A的邻边比斜边

    正切等于对边比邻边,

    ·三角函数恒等变形公式

    ·两角和与差的三角函数:

    cos(α+β)=cosα·cosβ-sinα·sinβ

    cos(α-β)=cosα·cosβ+sinα·sinβ

    sin(α±β)=sinα·cosβ±cosα·sinβ

    tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

    ·三角和的三角函数:

    sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

    cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

    ·辅助角公式:

    Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中

    sint=B/(A²+B²)^(1/2)

    cost=A/(A²+B²)^(1/2)

    tant=B/A

    Asinα+Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B

    ·倍角公式:

    sin(2α)=2sinα·cosα=2/(tanα+cotα)

    cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)

    tan(2α)=2tanα/[1-tan²(α)]

    ·三倍角公式:

    sin(3α)=3sinα-4sin³(α)

    cos(3α)=4cos³(α)-3cosα

    ·半角公式:

    sin(α/2)=±√((1-cosα)/2)

    cos(α/2)=±√((1+cosα)/2)

    tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

    ·降幂公式

    sin²(α)=(1-cos(2α))/2=versin(2α)/2

    cos²(α)=(1+cos(2α))/2=covers(2α)/2

    tan²(α)=(1-cos(2α))/(1+cos(2α))

    ·万能公式:

    sinα=2tan(α/2)/[1+tan²(α/2)]

    cosα=[1-tan²(α/2)]/[1+tan²(α/2)]

    tanα=2tan(α/2)/[1-tan²(α/2)]

    ·积化和差公式:

    sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

    cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

    cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

    sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

    ·和差化积公式:

    sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

    sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

    cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

    cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

    ·推导公式

    tanα+cotα=2/sin2α

    tanα-cotα=-2cot2α

    1+cos2α=2cos²α

    1-cos2α=2sin²α

    1+sinα=(sinα/2+cosα/2)²

    ·其他:

    sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

    cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

    sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2

    tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

    cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

    证明:

    左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

    =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)

    =[sin(n+1)x+sinnx-sinx]/2sinx=右边

    等式得证

    sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

    证明:

    左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

    =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

    =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

    等式得证

    [编辑本段]三角函数的诱导公式

    公式一:

    设α为任意角,终边相同的角的同一三角函数的值相等:

    sin(2kπ+α)=sinα

    cos(2kπ+α)=cosα

    tan(2kπ+α)=tanα

    cot(2kπ+α)=cotα

    公式二:

    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

    sin(π+α)=-sinα

    cos(π+α)=-cosα

    tan(π+α)=tanα

    cot(π+α)=cotα

    公式三:

    任意角α与 -α的三角函数值之间的关系:

    sin(-α)=-sinα

    cos(-α)=cosα

    tan(-α)=-tanα

    cot(-α)=-cotα

    公式四:

    利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

    sin(π-α)=sinα

    cos(π-α)=-cosα

    tan(π-α)=-tanα

    cot(π-α)=-cotα

    公式五:

    利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

    sin(2π-α)=-sinα

    cos(2π-α)=cosα

    tan(2π-α)=-tanα

    cot(2π-α)=-cotα

    公式六:

    π/2±α及3π/2±α与α的三角函数值之间的关系:

    sin(π/2+α)=cosα

    cos(π/2+α)=-sinα

    tan(π/2+α)=-cotα

    cot(π/2+α)=-tanα

    sin(π/2-α)=cosα

    cos(π/2-α)=sinα

    tan(π/2-α)=cotα

    cot(π/2-α)=tanα

    sin(3π/2+α)=-cosα

    cos(3π/2+α)=sinα

    tan(3π/2+α)=-cotα

    cot(3π/2+α)=-tanα

    sin(3π/2-α)=-cosα

    cos(3π/2-α)=-sinα

    tan(3π/2-α)=cotα

    cot(3π/2-α)=tanα

    (以上k∈Z)

    [编辑本段]正余弦定理

    正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .

    余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA

    角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边

    斜边与邻边夹角a

    sin=y/r

    无论y>x或y≤x

    无论a多大多小可以任意大小

    正弦的最大值为1 最小值为-

    [编辑本段]部分高等内容

    ·高等代数中三角函数的指数表示(由泰勒级数易得):

    sinx=[e^(ix)-e^(-ix)]/(2i)

    cosx=[e^(ix)+e^(-ix)]/2

    tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

    泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

    此时三角函数定义域已推广至整个复数集.

    ·三角函数作为微分方程的

    对于微分方程组 y=-y'';y=y'''',有通解Q,可证明

    Q=Asinx+Bcosx,因此也可以从此出发定义三角函数.

    补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣.

    特殊角的三角函数:

    角度a 0° 30° 45° 60° 90° 120° 180°

    1.sina 0 1/2 √2/2 √3/2 1 √3/2 0

    2.cosa 1 √3/2 √2/2 1/2 0 -1/2 -1

    3.tana 0 √3/3 1 √3 无限大 -√3 0

    4.cota / √3 1 √3/3 0 -√3/3 /

    [编辑本段]三角函数的计算

    幂级数

    c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

    c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

    它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数.

    泰勒展开式(幂级数展开法):

    f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...

    实用幂级数:

    ex = 1+x+x2/2!+x3/3!+...+xn/n!+...

    ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|