解题思路:(1)方案一根据表格数据知道买一件A商品需付款90(1-30%),一件B商品需付款100(1-15%),由此即可求出买A商品30件,B商品90件所需要的付款,由于买A商品30件,B商品90件,已经超过120件,所以按方案二付款应该返利20%,由此也可求出付款数;
(2)若购买总数没有超过100时,很明显应该按方案一购买;若购买总数超过100时,利用两种购买方式进行比较可以得到结论.
(1)方案一付款:30×90×(1-30%)+90×100×(1-15%)=9540元;
方案二付款:(30×90+90×100)×(1-20%)=9360元,
∵9540>9360,9540-9360=180元,
∴选用方案二更划算,能便宜180元;
(2)依题意得:x+2x+1=100,
解得:x=33,
当总件数不足100,即x<33时,只能选择方案一的优惠方式;
当总件数达到或超过100,即50>x≥33时,
方案一需付款:90(1-30%)x+100(1-15%)(2x+1)=233x+85,
方案二需付款:[90x+100(2x+1)](1-20%)=232x+80,
∵(233x+85)-(232x+80)=x+5>0.
∴选方案二优惠更大.
方案三:x≥50时,A商品采用方案一优惠;B商品采用方案二优惠!此时需付款223x+80(元),优惠最大.
点评:
本题考点: 一元一次方程的应用.
考点点评: 此题比较复杂,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.