是否存在等差数列{an}使a1Cn0+a2Cn1+a3Cn2+…+a(n+1)Cnn=n*2^n……

1个回答

  • 设存在an=a1+(n-1)d

    a1C(n,0)+a2C(n,1)+a3C(n,2)+…+a(n+1)C(n,n)

    =a1C(n,0)+(a1+d)C(n,1)+(a1+2d)C(n,2)+…+[a1+(n-1)d]C(n,n-1)+[a1+nd]C(n,n)

    =a1[C(n,0)+C(n,1)+C(n,2)+…+C(n,n)]+[dC(n,1)+2dC(n,2)+…+(n-1)dC(n,n-1)+ndC(n,n)]

    =a1*2^n+d[C(n,1)+2C(n,2)+…+(n-1)C(n,n-1)+nC(n,n)]

    =a1*2^n+(1/2)d{nC(n,n)+[C(n,1)+(n-1)C(n,n-1)]+[2C(n,2)+(n-2)C(n-2)]+…+[(n-2)C(n,n-2)+2C(n,2)]+[(n-1)C(n,n-1)+C(n,1)]+nC(n,n)}

    =a1*2^n+(1/2)d{nC(n,0)+nC(n,1)+nC(n,2)+…+nC(n,n-2)+nC(n,n-1)+nC(n,n)}

    =a1*2^n+(1/2)dn{C(n,0)+C(n,1)+C(n,2)+…+C(n,n-2)+C(n,n-1)+C(n,n)}

    =a1*2^n+(1/2)dn*2^n

    =[a1+(1/2)dn]2^n

    =n*2^n

    要使上式恒成立,只要a1+(1/2)dn=n恒成立,

    只要a1=n(1-d/2)恒成立,

    所以当a1=0,d=2时可满足要求,

    所以

    an=2n-2为所求.