∫xe^(x^2)dx
=(1/2)∫e^(x^2)dx^2
=(1/2)e^(x^2)
∫x^3e^(x^2)dx
=(1/2)∫x^2e^(x^2)dx^2
=(1/2)∫x^2de^(x^2)
=(1/2)x^2e^(x^2)-(1/2)∫e^(x^2)dx^2
=(1/2)x^2e^(x^2)-(1/2)e^(x^2)
所以原式=∫xe^(x^2)dx-∫x^3e^(x^2)dx
=(1/2)e^(x^2)-(1/2)x^2e^(x^2)+(1/2)e^(x^2)
=e^(x^2)-(1/2)x^2e^(x^2)(0到1)
=(e-e/2)-(1-0)
=e/2-1