Sn=a1+a2+...+an=25
S2n=a1+a2+...+an+a(n+1)+a(n+2)+...+a(n+n)=a1+a2+...+an+a1+nd+a2+nd+...+an+nd
=2(a1+a2+...+an)+n²d=2×25+n²d=100
n²d=50 a(n+1)+a(n+2)+...+a(2n)=100-25=75
S3n=a1+a2+...+an+a(n+1)+a(n+2)+...+a(n+n)+a(n+n+1)+a(n+n+2)+...+a(n+n+n)
=a1+a2+...+an+2[a(n+1)+a(n+2)+...+a(n+n)]+n²d
=25+2×75+50
=225