解题思路:易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b,c的值.
由题意得新抛物线的顶点为(1,-4),
∴原抛物线的顶点为(-1,-1),
设原抛物线的解析式为y=(x-h)2+k代入得:y=(x+1)2-1=x2+2x,
∴b=2,c=0.
故选B.
点评:
本题考点: 二次函数图象与几何变换.
考点点评: 抛物线平移不改变二次项的系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.
解题思路:易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b,c的值.
由题意得新抛物线的顶点为(1,-4),
∴原抛物线的顶点为(-1,-1),
设原抛物线的解析式为y=(x-h)2+k代入得:y=(x+1)2-1=x2+2x,
∴b=2,c=0.
故选B.
点评:
本题考点: 二次函数图象与几何变换.
考点点评: 抛物线平移不改变二次项的系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.