(Ⅰ)cos2A+2sin²[(B+C)/2]=1 → 1-2sin²A+2sin²[(B+C)/2]=1 → sinA=sin[(B+C)/2] → A=(B+C)/2;
∴ 3A=180° → A=60°;
由余弦定理:BC²=AC²+AB²-2AC*AB*cosA=2²+1²-2*2*1*cos60°=3,∴ BC=√3;△ABC为RT△;
(Ⅱ)由题意得:(x/sinA)+(y/sinC)=AC;
将 sinA=sin60°=√3/2、sinC=1/2 代入得:(2x/√3)+2y=2,即 y=1-x√3/3;
∴ xy=x*[1-(x√3/3)]=x-(x²√3/3)=-√3/3[x-(√3/2)]²+(3/4);
xy 最大值:3/4(当 x=√3/2=BC/2,由RT△可得出:PA=PC,即P位于AC边的中点时);