解题思路:把a2+b2+c2+d2=2ab+2cd变形得到a2-2ab+b2+c2-2cd+d2=0,则根据完全平方公式得到(a-b)2+(c-d)2=0,根据非负数的性质得a=b且c=d,然后根据平行四边形的判定方法求解.
∵a2+b2+c2+d2=2ab+2cd,
∴a2-2ab+b2+c2-2cd+d2=0,
∴(a-b)2+(c-d)2=0,
∴a=b且c=d,
∵a,b为对边,
∵两组对边分别相等的四边形是平行四边形,
∴此四边形为平行四边形.
故选:D.
点评:
本题考点: 因式分解的应用;平行四边形的判定.
考点点评: 本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了非负数的性质和平行四边形的判定.