设两横坐标为x1,x2.
x1^3+x2^3=-13/4
(x1+x2)(x1^2-x1x2+x2^2)=-13/4
x1^2-x1x2+x2^2=13/4
(x1+x2)^2-3x1x2=13/4
3x1x2=9/4
x1x2=-3/4 m=-3 y=4x^2+4x-3
把x1,x2看作方程两根
z^2+z-3/4=0
z1=1/2
z2=-2/3
设两横坐标为x1,x2.
x1^3+x2^3=-13/4
(x1+x2)(x1^2-x1x2+x2^2)=-13/4
x1^2-x1x2+x2^2=13/4
(x1+x2)^2-3x1x2=13/4
3x1x2=9/4
x1x2=-3/4 m=-3 y=4x^2+4x-3
把x1,x2看作方程两根
z^2+z-3/4=0
z1=1/2
z2=-2/3