令x开6次方为t
x=t的6次方 (表示为t^6)
x→1,t→1
所以
原式=lim(t→1)(t³-1)/(t²-1)
=lim(t→1)(t-1)(t²+t+1)/(t-1)(t+1)
=lim(t→1)(t²+t+1)/(t+1)
=(1+1+1)/(1+1)
=3/2
令x开6次方为t
x=t的6次方 (表示为t^6)
x→1,t→1
所以
原式=lim(t→1)(t³-1)/(t²-1)
=lim(t→1)(t-1)(t²+t+1)/(t-1)(t+1)
=lim(t→1)(t²+t+1)/(t+1)
=(1+1+1)/(1+1)
=3/2