证明:
设G'(ξ)=f'(ξ)*ξ+ f(ξ) ,f(ξ)的原函数为F(ξ)+C
则G(ξ)=f(ξ)*ξ+F(ξ)+C
因为 G(0)=F(ξ)+C G(1)=F(ξ)+C 所以G(0)=G(1)
所以 G(x)满足罗尔定理的条件
故,在( 0,1 ) 存在一点ξ,使 G'(ξ)=0
所以G'(ξ)=f'(ξ)*ξ+ f(ξ) =0,即 f'(ξ)=-f(ξ)/ξ
证明:
设G'(ξ)=f'(ξ)*ξ+ f(ξ) ,f(ξ)的原函数为F(ξ)+C
则G(ξ)=f(ξ)*ξ+F(ξ)+C
因为 G(0)=F(ξ)+C G(1)=F(ξ)+C 所以G(0)=G(1)
所以 G(x)满足罗尔定理的条件
故,在( 0,1 ) 存在一点ξ,使 G'(ξ)=0
所以G'(ξ)=f'(ξ)*ξ+ f(ξ) =0,即 f'(ξ)=-f(ξ)/ξ