解
1.∵⊿BCD是等腰直角三角形.且对角线BD=√2
∴正方形ABCD的边长为 1
∵∠ADC=∠EDF=90°
∴∠ADC - ∠EDC = ∠EDF - ∠EDC
即:∠ADE = ∠CDF
又 AD = CD,∠A = ∠FCD = 90°
∴⊿ADE ≌ ⊿CDF
∴ AE = CF =BF- BC
= √2 - 1
∴ BE = AB - AE
= 1 - ( √2 - 1)
= 2 - √2
2.找不到 O 点.
解
1.∵⊿BCD是等腰直角三角形.且对角线BD=√2
∴正方形ABCD的边长为 1
∵∠ADC=∠EDF=90°
∴∠ADC - ∠EDC = ∠EDF - ∠EDC
即:∠ADE = ∠CDF
又 AD = CD,∠A = ∠FCD = 90°
∴⊿ADE ≌ ⊿CDF
∴ AE = CF =BF- BC
= √2 - 1
∴ BE = AB - AE
= 1 - ( √2 - 1)
= 2 - √2
2.找不到 O 点.