设a0=a,则Sn=a(1-q^n)/(1-q),
Tn=(1/a)[1-(1/q)^n]/[1-(1/q)]
Sn-Tn=[(1-q^n)/(1-q)]*{a-[1/(a*q^(n-1))]},
要使Sn-Tn>0,则a-1/(a*q^(n-1))>0,即a^2>(1/q)^(n-1)
又由(a10)^2=a15得a^2*q^18=a*q^14,
故a=(1/q)^4,由此得q^(n-1)>q^8,由于q>1,故n的最小值是10
设a0=a,则Sn=a(1-q^n)/(1-q),
Tn=(1/a)[1-(1/q)^n]/[1-(1/q)]
Sn-Tn=[(1-q^n)/(1-q)]*{a-[1/(a*q^(n-1))]},
要使Sn-Tn>0,则a-1/(a*q^(n-1))>0,即a^2>(1/q)^(n-1)
又由(a10)^2=a15得a^2*q^18=a*q^14,
故a=(1/q)^4,由此得q^(n-1)>q^8,由于q>1,故n的最小值是10