(cosx)^2=(1+cos2x)/2
所以(cosx)^4=[1+2cos2x+(cos2x)^2]/4
(cos2x)^2=(1+cos4x)/2
所以(cosx)^4=1/4+(1/2)cos2x+(1+cos4x)/8
=3/8+(1/2)cos2x+(1/8)cos4x
∫3/8dx=3x/8
∫cos2xdx=(1/2)sin2x
∫cos4xdx=(1/4)sin4x
所以原式=3x/8+(1/2)*(1/2)sin2x+(1/8)*(1/4)sin4x+C
=3x/8+(1/4)*sin2x+(1/32)*sin4x+C