设(7x-6)/(x^2-3*x+2)=a/(x-1)+b/(x-2)
a/(x-1)+b/(x-2)
=[a(x-2)+b(x-1)]/(x^2-3x+2)
=[(a+b)x-(2a+b)]/(x^2-3x+2)
=(7x-6)/(x^2-3x+2)
所以a+b=7
2a+b=6
a=-1,b=8
(7x-6)/(x^2-3x+2)=8/(x+2)-1/(x-1)
设(7x-6)/(x^2-3*x+2)=a/(x-1)+b/(x-2)
a/(x-1)+b/(x-2)
=[a(x-2)+b(x-1)]/(x^2-3x+2)
=[(a+b)x-(2a+b)]/(x^2-3x+2)
=(7x-6)/(x^2-3x+2)
所以a+b=7
2a+b=6
a=-1,b=8
(7x-6)/(x^2-3x+2)=8/(x+2)-1/(x-1)