解题思路:由f(x)满足f(x-4)=-f(x)可变形为f(x-8)=f(x),得到函数是以8为周期的周期函数,再由f(x)在区间[0,2]上是增函数,以及奇函数的性质,推出函数在[-2,2]上的单调性,即可得到结论.
∵f(x)满足f(x-4)=-f(x),
∴f(x-8)=f(x-4-4)=-f(x-4)=f(x),
∴函数是以8为周期的周期函数,
则f(-25)=f(-1),f(80)=f(0),f(11)=f(3),
又∵f(x)在R上是奇函数,f(0)=0,
得f(80)=f(0)=0,f(-25)=f(-1),
而由f(x-4)=-f(x)
得f(11)=f(3)=-f(3-4)=-f(-1)=f(1),
又∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数
∴f(x)在区间[-2,2]上是增函数
∴f(-1)<f(0)<f(1),
即f(-25)<f(80)<f(11),
故选:D.
点评:
本题考点: 抽象函数及其应用.
考点点评: 本题主要考查函数奇偶性和单调性的综合运用,同时考查函数的周期性,解题的关键:把要比较的函数值转化为单调区间上的函数值进行比较.