f(x)=1/(x*(x+1)),则f(1)=1/(1*(1+1))=1-1/2=1/2
f(n)=1/(n*(n+1))=1/n-1/(n+1)
f1+f2+f3+...+fn=15分之141-1/2+1/2-1/3+.+1/n-1/(n+1)=1-1/151-1/(n+1)=1-1/151/(n+1)=1/15n+1=15n=14
f(x)=1/(x*(x+1)),则f(1)=1/(1*(1+1))=1-1/2=1/2
f(n)=1/(n*(n+1))=1/n-1/(n+1)
f1+f2+f3+...+fn=15分之141-1/2+1/2-1/3+.+1/n-1/(n+1)=1-1/151-1/(n+1)=1-1/151/(n+1)=1/15n+1=15n=14