∵BD、CD分别∠FBC、∠ECB,
∴∠DBC=1/2∠FBC=1/2(∠A+∠ACB),
∠DCB=1/2∠ECB=1/2(∠ABC+∠A),
∴∠DBC+∠DCB=1/2(∠A+∠ACB+∠ABC+∠A)
=1/2(180°+∠A)
=90°+1/2∠A,
∴∠D=180°-(∠DBC+∠DCB)
=180°-(90°+1/2∠A)
=90°-1/2∠A.
∵BD、CD分别∠FBC、∠ECB,
∴∠DBC=1/2∠FBC=1/2(∠A+∠ACB),
∠DCB=1/2∠ECB=1/2(∠ABC+∠A),
∴∠DBC+∠DCB=1/2(∠A+∠ACB+∠ABC+∠A)
=1/2(180°+∠A)
=90°+1/2∠A,
∴∠D=180°-(∠DBC+∠DCB)
=180°-(90°+1/2∠A)
=90°-1/2∠A.