解题思路:(Ⅰ)由已知条件利用等差数列通项公式、前n项和公式及等比数列性质,求出首项和公差,由此能求出数列{an}的通项公式.
(2)由
b
n
=2n+
2
2n
=2n+
4
n
,利用分组求和法能求出数列{bn}的前n项和.
(Ⅰ)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,
得(2+2d)2=(2+d)(3+3d),解得d=2,或d=-1,…(2分)
当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,…(4分)
∴an=a1+(n-1)d=2+2(n-1)=2n,
即数列{an}的通项公式an=2n.…(6分)
(2)∵bn=2n+22n=2n+4n…(8分)
∴Sn=(2+4)+(4+42)+…+(2n+4n)
=(2+4+…+2n)+(4+42+…+4n)
=
n(2+2n)
2+
4(1−4n)
1−4
=n2+n+
4
3(4n−1).
点评:
本题考点: 数列的求和;等比数列的性质.
考点点评: 本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意分组求和法的合理运用.