设∫(tanx)^ndx,I(n)=1/(n-1)*(tanx)^(n-1)-I(n-2),并求∫(tanx)^5dx,

1个回答

  • I(n) = tanⁿ⁻¹x/(n - 1) - I(n - 2)

    ∫ tan⁵x dx = I(5)

    = tan⁵⁻¹x/(5 - 1) - I(3)

    = (1/4)tan⁴x - ∫ tan³x dx

    = (1/4)tan⁴x - [tan³⁻¹/(3 - 1) - I]

    = (1/4)tan⁴x - (1/2)tan²x + ∫ tanx dx

    = (1/4)tan⁴x - (1/2)tan²x + ∫ - d(cosx)/cosx

    = (1/4)tan⁴x - (1/2)tan²x - ln|cosx| + C