1.已知m^2+n^2-6m+10n+34=0,求m,n的值..

1个回答

  • 1.已知m^2+n^2-6m+10n+34=0,求m,n的值..

    (m^2-6m+9)+(n^2+10n+25)=0

    (m-3)^2+(n+5)^2=0

    m-3=0

    n+5=0

    m=3

    n=-5

    2.若a+2b+3c=12,并且a^2+b^2+c^2=ab+bc+ac,求a+b^2+c^3的值.

    a^2+b^2+c^2-ab-bc-ca=0

    2a^2+2b^2+2c^2-a*2b-2bc-2ca=0

    (a-b)^2+(b-c)^2+(a-c)^2=0

    所以:a=b=c

    a+2b+3c=12

    a=b=c=2

    a+b^2+c^3=14