1.已知m^2+n^2-6m+10n+34=0,求m,n的值..
(m^2-6m+9)+(n^2+10n+25)=0
(m-3)^2+(n+5)^2=0
m-3=0
n+5=0
m=3
n=-5
2.若a+2b+3c=12,并且a^2+b^2+c^2=ab+bc+ac,求a+b^2+c^3的值.
a^2+b^2+c^2-ab-bc-ca=0
2a^2+2b^2+2c^2-a*2b-2bc-2ca=0
(a-b)^2+(b-c)^2+(a-c)^2=0
所以:a=b=c
a+2b+3c=12
a=b=c=2
a+b^2+c^3=14