方法一(2n-1)an=S(2n-1),
(2n-1)bn=T(2n-1),
所以an/bn=S(2n-1)/T(2n-1)
=[7(2n-1)+1]/[4(2n-1)+27]
=(14n-6)/(8n+23) 方法二因为等差数列前N项和形式是xN^2+yN
所以 An = 7n^2+n(真正形式,未约分前)
Bn= 4n+27 (真正形式,未约分前)
所以an = 8+ 14*(n-1)=14n-6
bn = 31 + 8*(n-1)=8n+23
an/bn=(14n-6)/(8n+23
方法一(2n-1)an=S(2n-1),
(2n-1)bn=T(2n-1),
所以an/bn=S(2n-1)/T(2n-1)
=[7(2n-1)+1]/[4(2n-1)+27]
=(14n-6)/(8n+23) 方法二因为等差数列前N项和形式是xN^2+yN
所以 An = 7n^2+n(真正形式,未约分前)
Bn= 4n+27 (真正形式,未约分前)
所以an = 8+ 14*(n-1)=14n-6
bn = 31 + 8*(n-1)=8n+23
an/bn=(14n-6)/(8n+23