1.
连接BC
∵ 角cdb=3角A
∴ 角BCD+角CBD = 180 - 3角A
∵ 角A+角ABD+角CBD+角ADB+角CDB = 180
即 角A + 20 + 40 + 180-3角 = 180
∴A角 = 30
2.
∵ ∠ADC = ∠B+∠BAD
又 ∵ ∠B = ∠DAC
∴ ADC = ∠DAC+BAD =∠BAC
1.
连接BC
∵ 角cdb=3角A
∴ 角BCD+角CBD = 180 - 3角A
∵ 角A+角ABD+角CBD+角ADB+角CDB = 180
即 角A + 20 + 40 + 180-3角 = 180
∴A角 = 30
2.
∵ ∠ADC = ∠B+∠BAD
又 ∵ ∠B = ∠DAC
∴ ADC = ∠DAC+BAD =∠BAC