原题应为:已知:如图,矩形ABCD中,AB=2,AD=3,E、F分别是AB、CD的中点.
(1)在边AD上取一点M,使点A关于BM的对称点C恰好落在EF上.设BM与EF相交于点N,求证:四边形ANGM是菱形;
(2)设P是AD上一点,∠PFB=3∠FBC,求线段AP的长.
考点:菱形的判定;矩形的性质
.专题:计算题;证明题.
分析:(1)设AG交MN于O,由题意易得AO=GO,AG⊥MN,要证四边形ANGM是菱形,还需证明OM=ON,又可证明AD‖EF‖BC.∴MO:ON=AO:OG=1:1,∴MO=NO;
(2)连接AF,由题意可证得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA= 根号(DF的平方+PD的平方)=根号【1-(3-PA)的平方】,求得PA=3分之5 .
(1)证明:设AG交MN于O,则
∵A、G关于BM对称,
∴AO=GO,AG⊥MN.
∵E、F分别是矩形ABCD中AB、CD的中点,
∴AE=BE,AE‖DF且AE=DF,
∴AD‖EF‖BC.
∴MO:ON=AO:OG=1:1.
∴MO=NO.
∴AG与MN互相平分且互相垂直.
∴四边形ANGM是菱形.
(2)连接AF,
∵AD‖EF‖BC,
∴∠PAF=∠AFE,∠EFB=∠FBC.
又EF⊥AB,AE=BE,
∴AF=BF,
∴∠AFE=∠EFB.
∴∠PAF=∠AFE=∠EFB=∠FBC.
∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC.
∴∠PFA=∠FBC=∠PAF.
∴PA=PF.
∴PA= 根号(DF的平方+PD的平方)=根号【1-(3-PA)的平方】.
∴PA=3分之5 .
点评:本题主要考查菱形和平行四边形的识别及推理论证能力.对角线互相垂直平分的四边形是菱形.
祝楼主钱途无限,事事都给力!