分析下加数1/[(2n-1)(2n+1)]=(1/2)[1/(2n-1)-1/(2n+1)],则这些和就等于
=(1/2)[1/1-1/3]+(1/2)[1/3-1/5]+(1/2)[1/5-1/7]+…+(1/2)[1/(2n-1)-1/(2n+1)]
=(1/2)[1/1-1/(2n+1)]
=n/(2n+1)
注:这种方法叫裂项相消法.
分析下加数1/[(2n-1)(2n+1)]=(1/2)[1/(2n-1)-1/(2n+1)],则这些和就等于
=(1/2)[1/1-1/3]+(1/2)[1/3-1/5]+(1/2)[1/5-1/7]+…+(1/2)[1/(2n-1)-1/(2n+1)]
=(1/2)[1/1-1/(2n+1)]
=n/(2n+1)
注:这种方法叫裂项相消法.