几道数学简单的2倍角函数题(1)tana-1/tana=-2/tan2a(2)tan(a+pai/4)+tan(a-pa

1个回答

  • (1)∵左边=(tan²a-1)/tana

    =-2(1-tan²a)/(2tana)

    =-2/(2tana/(1-tan²a))

    =2/tan2a (∵tan2a=2tana/(1-tan²a))

    =右边

    ∴原命题成立;

    (2)∵左边=(tana+tan(π/4))/(1-tanatan(π/4))+(tana-tan(π/4))/(1+tanatan(π/4))

    =(tana+1)/(1-tana)+(tana-1)/(1+tana)

    =((tana+1)²-(tana-1)²)/(1-tan²a)

    =4tana/(1-tan²a)

    =2tan2a (∵tan2a=2tana/(1-tan²a))

    =右边

    ∴原命题成立;

    (3)∵左边=(sin²a+cos²a+2sinacosa)/(sina+cosa)

    =(sina+cosa)²/(sina+cosa)

    =sina+cosa

    =右边

    ∴原命题成立;

    (4)∵左边=sina*2cos²a

    =(2sinacosa)cosa

    =sin2acosa

    =右边

    ∴原命题成立;

    (5)∵左边=cos((pai/4+a)-(pai/4-a))-cos((pai/4+a)+(pai/4-a))

    =cos2a-cos(pai/2)

    =cos2a

    =右边

    ∴原命题成立;

    (6)∵左边=(sin²a+cos²a+2sinacosa-cos²a+sin²a)/(sin²a+cos²a+2sinacosa+cos²a-sin²a)

    =(2sin²a+2sinacosa)/(2cos²a+2sinacosa)

    =2sina(sina+cosa)/(2cosa(sina+cosa))

    =sina/cosa

    =tana

    =右边

    ∴原命题成立.