(1)∵左边=(tan²a-1)/tana
=-2(1-tan²a)/(2tana)
=-2/(2tana/(1-tan²a))
=2/tan2a (∵tan2a=2tana/(1-tan²a))
=右边
∴原命题成立;
(2)∵左边=(tana+tan(π/4))/(1-tanatan(π/4))+(tana-tan(π/4))/(1+tanatan(π/4))
=(tana+1)/(1-tana)+(tana-1)/(1+tana)
=((tana+1)²-(tana-1)²)/(1-tan²a)
=4tana/(1-tan²a)
=2tan2a (∵tan2a=2tana/(1-tan²a))
=右边
∴原命题成立;
(3)∵左边=(sin²a+cos²a+2sinacosa)/(sina+cosa)
=(sina+cosa)²/(sina+cosa)
=sina+cosa
=右边
∴原命题成立;
(4)∵左边=sina*2cos²a
=(2sinacosa)cosa
=sin2acosa
=右边
∴原命题成立;
(5)∵左边=cos((pai/4+a)-(pai/4-a))-cos((pai/4+a)+(pai/4-a))
=cos2a-cos(pai/2)
=cos2a
=右边
∴原命题成立;
(6)∵左边=(sin²a+cos²a+2sinacosa-cos²a+sin²a)/(sin²a+cos²a+2sinacosa+cos²a-sin²a)
=(2sin²a+2sinacosa)/(2cos²a+2sinacosa)
=2sina(sina+cosa)/(2cosa(sina+cosa))
=sina/cosa
=tana
=右边
∴原命题成立.