因为,在△ACD和△CBE中,∠ADC = 90°= ∠CEB,∠CAD = 90°-∠ACD = ∠BCE ,AC = CB ,
所以,△ACD ≌ △CBE ,
可得:AD = CE ,CD = BE ,
所以,AD = CE = CD+DE = BE+DE .
因为,在△ACD和△CBE中,∠ADC = 90°= ∠CEB,∠CAD = 90°-∠ACD = ∠BCE ,AC = CB ,
所以,△ACD ≌ △CBE ,
可得:AD = CE ,CD = BE ,
所以,AD = CE = CD+DE = BE+DE .