设x^5+y^5=2,证明x+y≤2

1个回答

  • 证明:

    1)因 x^5+y^5=2,容易证明,x+y>0 ①

    2)(x+y)^5

    =x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5

    =x^5+y^5+5(x^4y+xy^4)+10(x^3y^2+x^2y^3) ②

    而 x^5+y^5-x^4y-xy^4

    =(x-y)(x^4-y^4)

    =(x^2+y^2)(x+y)(x-y)^2>=0 (x+y>0)

    所以 x^5+y^5>x^4y^-xy^4

    又 x^5+y^5-x^3y^2-x^2y^3

    =(x+y)(x-y)^2*(x^2+xy+y^2)>=0

    则由②式得

    (x+y)^5=x^5+y^5+5(x^4y+xy^4)+10(x^3y^2+x^2y^3)