f(x)=(1/3)^x
g(x)与f(x)关于直线y=1对称;求g(x)
设P(x,y)是g(x)图象上任一点,关于直线y=1的对称点P'(x',y')
{x=x'
{y+y'=2
==>
{x'=x
{y'=2-y
P'(x,2-y)
P'点在f(x)图象上,所以
2-y=(1/3)^x
y=2-(1/3)^x
g(x)=2-(1/3)^x
f(x)=(1/3)^x
g(x)与f(x)关于直线y=1对称;求g(x)
设P(x,y)是g(x)图象上任一点,关于直线y=1的对称点P'(x',y')
{x=x'
{y+y'=2
==>
{x'=x
{y'=2-y
P'(x,2-y)
P'点在f(x)图象上,所以
2-y=(1/3)^x
y=2-(1/3)^x
g(x)=2-(1/3)^x