用分部积分法
∫x^2 sin2x dx
=1/2∫x^2 sin2x d(2x)
=-1/2∫x^2 d(cos2x)
=-1/2x^2(cos2x)+1/2∫2xcos2xdx
=-1/2x^2(cos2x)+1/2∫xd(sin2x)
=-1/2x^2(cos2x)+1/2x(sin2x)-1/2∫sin2xdx
=-1/2x^2(cos2x)+1/2x(sin2x)+1/4cos2x+C
用分部积分法
∫x^2 sin2x dx
=1/2∫x^2 sin2x d(2x)
=-1/2∫x^2 d(cos2x)
=-1/2x^2(cos2x)+1/2∫2xcos2xdx
=-1/2x^2(cos2x)+1/2∫xd(sin2x)
=-1/2x^2(cos2x)+1/2x(sin2x)-1/2∫sin2xdx
=-1/2x^2(cos2x)+1/2x(sin2x)+1/4cos2x+C